Reading Menu Projects

This year I’ve had the opportunity to work with a fifth grade reading group. My day consists of almost all math instruction, so having a reading enrichment group is something different. I appreciate the different subject matter as I tend to look at most content through a math lens. The group meets every day for about 30 minutes. This is my third year teaching this  group and I’ve become more familiar with the resources every year.

I find that each year brings new ideas and this year is no different. I always tend to ask question about making relevant connections to the content that I teach. This year my students are studying Hamlet. They’re not delving too deep into the original text. In fact, we’re reading this book and have been exploring Hamlet for the past month. It’s been an exciting journey. Along with reviewing the play, the class used a character map, learned about Will, and viewed clips from a contemporary portrayal of Hamlet with David Tennant.

The class is now in the final stretch of our Hamlet unit. So, for the last unit I decided to try something different. Ideally, I’d like to have students remember Hamlet when they encounter it again in a few years. I decided to use a menu board approach.  Each student picked one project below.

Screen Shot 2018-03-19 at 7.42.49 PM.png

The class then reviewed a criteria for success rubric. Honestly, the rubric seems quite intense at first. But in all fairness, I needed to have a rubric that actually encompassed all of the menu items.

Screen Shot 2018-03-19 at 8.10.59 PM.png


I made sure to have the students review the part on the left side. In that past, I’ve found that sometimes students might pick a project that is less challenging. I was hoping to be proven wrong with this project.


Screen Shot 2018-03-19 at 7.30.30 PM.png

Students “signed-off” on the project and were committed.  I find value in having students actual write that they agree to the criteria.  I think it adds an ownership element that isn’t always there.  It also reminds me what resources to pick up before next class.

Screen Shot 2018-03-19 at 8.10.23 PM

I was pleasantly surprised to see that all of the menu items were picked – some more than others.

Screen Shot 2018-03-19 at 7.47.33 PM

Students were then given the remainder of that Monday to work on the projects. Near the end of class I told the students the plan for the rest of the week.  They had the next four days to complete their menu item. My job was to gather materials and the technology that was needed. I had to find more technology since my school isn’t 1:1. I begged and borrowed from the other teachers in my building to get enough Chromebooks and iPads to make the projects feasible. Priority for iPad and Chromebook use was given to the stop-motion-video and board game creators. I was pleasantly surprised to find that some of my kids wanted to create a video game using Scratch.  One of my favorites was a duel between Hamlet and Laertes, where Hamlet always wins.

This slideshow requires JavaScript.

Near the end of the week most students were finished, although a few voluntarily came in during their recess to finish up the project. The next Monday was designed for feedback.

Over the weekend I created a Google Form for student feedback. Students scanned the code when they entered the class.  Each student filled out the feedback form and reviewed another student’s project.

Screen Shot 2018-03-19 at 7.49.03 PMScreen Shot 2018-03-19 at 7.49.12 PM

You can view the sheet here. Currently, the class is halfway through giving feedback because we’ve had a slight interruption because of Parcc testing. Tomorrow the class will be giving additional feedback. My plan is to print out the feedback and give the responses (without the names) to each student. The authors will then have an opportunity to analyze the feedback and give responses as needed.

The student engagement for this project was top notch and I was impressed with the quality of work produced.  This reading menu has me wondering how a menu system could be applied in the math classroom.  So far, I haven’t had as much success with a menu in the math classroom.  I’ve used choice boards, but they haven’ been anything spectacular. Anyone have success with this?  This topic is something to ponder before heading off into spring break next week.


Fraction Division – Models and Strategies

My fourth grade students have been exploring fractions.  They’ve become familiar with how to add, subtract, and multiply fractions.  They just started to divide fractions earlier in the week.  Whenever I introduce fraction division I tend to have one or two kids that raise their hand quickly.   Their quickly raised hand tends to cause me to slow down and prepare.   They comment that there’s a “fast” way to divide fractions that they learned at Kumon or from someone at home.  Sadly, that trick is infamous number 1 on the NCTM’s Tricks that Expire!  These students can explain what to do, (change the numerator and denominator of the second fraction and multiply) but struggle when pushed to explain why it works.  I feel like at times these particular students inadvertently or purposefly convince others in the class that this method is the quickest.  Some agreed, but introducing this idea at the begging caused unneeded confusion.

I shifted the discussion to the meaning of the fraction bar.  One of the students mentioned that the fraction 1/2 is the same as 1 divided by 2.  Another student said that is the same as 0.5.  This conversation was productive and moved the discussion back on course.  Students started to build upon each response and were able to start thinking more about their own understanding of fractions.  I then introduced the idea of fraction as division.  This resonated well with students and I could tell that they were really thinking about how they view fractions.  I then put this problem on the board.

Screen Shot 2018-03-14 at 8.25.39 PM

Students thought for a little while and then decided to split up each fraction into three pieces.  They then counted up the pieces to find 9.

Screen Shot 2018-03-14 at 8.29.06 PM


I then introduced students to a common numerator and denominator model.  Students thought about this problem and then started making a few guesses.

Screen Shot 2018-03-14 at 8.31.45 PM.png

One thing that seemed to shift this thinking was to look at fraction as division.  In my years of teaching this seems to make quite a few connections   Many students know that a half of a half is a quarter, but are a confused when it comes to dividing a half.  One student mentioned that they both have common denominators and that might be useful when dividing.  Another student said that a fraction is division, so you could divide the numerators and denominators.

Screen Shot 2018-03-14 at 8.34.07 PM.png

The class agreed that this will work as long as the denominators are the same. They also concluded that if the denominators aren’t the same, we can find an equivalent fraction to create ones that are. This conversation lasted for about five minutes.  It was productive and not once was there mention of a “fast” method to divide fractions.  I’m hoping that students hold on to visual models and using a variety of strategies when dividing fractions in the future.  Next week, we’ll be investigating how to divide mixed numbers.  That’ll most likely happen after our week long PARCC adventure.

Representing Volume

Screen Shot 2018-03-05 at 6.10.49 PM
My fourth graders are starting a new unit on fraction computation this week.  Last week, students finished up month long unit on volume and area.  After grading the tests, I started to reflect on a few different activities that seemed to help students understand volume a bit better.  One particular task will be highlighted in this post. I’m not going to lie, this task was quite challenging for kids, but I feel like the students were able to make some amazing math connections in the process.

So last week, I brought the students to the front of the room and we discussed area and volume.  Students provided examples of area and volume and referenced the city that they created earlier in the year.  Students then randomly came up to the room and drew out a slip of a paper.  The slips indicated a particular volume task. The tasks were all related to making a 3D shape that matched a certain dimension range.

Screen Shot 2018-03-05 at 5.53.15 PM

Screen Shot 2018-03-05 at 5.53.09 PMScreen Shot 2018-03-05 at 5.53.03 PM

Students drew the small little sheets out of a cup.  It was exciting as students weren’t quite sure which sheet they were going to get.  Students were then given the direction sheet, where they were asked to create the net, tape/glue it together, place it on the sheet, and then take a picture and send it to their digital portfolio.

Screen Shot 2018-03-05 at 6.06.56 PM.png

Students were then given the centimeter grid and were off to the races.  Some students had to take multiple grid sheets as they missed the required dimensions on many different attempts.  Eventually, most students calculate the volume that they needed and used a formula.  Students then used the formula to calculate the volume before creating the net.

Screen Shot 2018-03-05 at 6.01.41 PM.png
This took multiple attempts

Students didn’t seem to have too many problems with rectangular prisms or cubes, but cylinders and cones were a bit more challenging.  Students were able to create the base fairly quickly.  The curved surface was an issue for some.  Many students had trouble creating a large enough curved surface to match the cones and cylinders.  One student mentioned that the curved surface needed to be around 3 1/4 of the length of the circumference.  I enjoyed hearing that as a couple students had a conversation on how to make their shape fit a required dimension. That’s an #eduwin in my book.  Students then attached their constructed structures to the direction sheet.

Students then put the different structures on a map and created a small city.  I’m hoping at some point the students will be able to create a short stop-motion-video using the volume structures.  It might fit in perfectly with our rate/ratio unit that will be coming up after PARCC testing.

Screen Shot 2018-03-05 at 6.08.17 PM

Volume and Fixable Mistakes

Screen Shot 2018-02-24 at 10.13.44 PM.png

My fourth grade students have been exploring volume and area for the past few weeks. Lately, they’ve investigated different methods to find the volume of prisms, pyramids, cones, and cylinders. Through this process, they created their cities of volume and have been studying this topic extensively.  This fourth grade crew has made a lot of progress in finding the volume of objects when given the dimensions.  This particular unit of study is more focused on making spatial connections and using formulas to find volume.  Although the kids have been showing a better understanding, I’m observing very similar errors when I give checkpoints.

  • Using inappropriate units (squared vs. cubed)

Students need constant reminders to show appropriate units.  When I whiteout the unit line it’s interesting which students automatically write down the correct units and those that leave it blank.  Lately I’ve been bringing out the base-ten blocks to show the difference between linear measurements, area, and volume.  Students tend to not have any issues with telling the difference at that time, but when concentrating on formulas, the units are sometimes omitted.  I’m currently looking at different ways for students to show their understanding of the differences between square and cubic units.  I don’t want to heavily focus on this, but I’m noticing it as more of a student afterthought than something that they think of while answer a question.

  • Find the lengths of a side or the circumference with volume is given

Students seem to be efficient when trying to find the volume of prisms and cylinders.  When given the measurements of each side, students tend to perform the calculations correctly.  It’s a bit of a different story when students are given the volume and are asked to find other dimensions.  Some students rock this and do well, others not so much.  The class reviewed these types of problems by using a variable for the missing side or circumference.  We then created a few different steps that can be taken when tackling these types of problems.  I’d say the majority of issues with this specific problem came when students were given the volume of a cylinder or cone and needed to find the volume.  This is something that the class is still reviewing.

  • Remember that in r^2 actually means r * r and not r * 2

I’m going to chalk this up to not having enough practice with exponents.  At this level, students have used exponents, but more so to show Scientific notation.  When students hear “to the second power”, some hear that the word second and just multiply the radius by two.  Some students also problematically use the diameter and call it the radius.  Digging deeper into this issue has also revealed that some students aren’t using the Order of Operations to solve for volume.  Next week I’m planning on co-creating an anchor chart to address this.  Also, Pi Day (3/14/18)  is coming up soon and the class will definitely address the vocabulary and formulas associated with that soon.

These three issues have come up fairly consistently during the past week.  I’m looking forward to addressing them next week, but also having the students become more aware of what fixable mistakes exist so we can be more proactive. I’m also looking into having students create a culminating volume activity.  Putting that together is in my plans for tomorrow.


A simple mistake or something more?

Screen Shot 2018-02-18 at 1.19.07 PM.png

I’m grading tests this weekend.  My third grade group just finished up an assessment on fractions and multiplication.  It’s been about a 1-2 month journey full of investigations on this particular topic.  Many formative checkpoints were planned along the way and the unit assessment was scheduled for last week.

While reviewing the student work, I’ll sometimes write questions or direct students to a part of the question that would’ve made their answer more complete.  There are moments of pride and moments where simple mistakes drive me a bit crazy.  You see, there are only eight units with my new resource, so the assessments influence grade reporting quite significantly.

After grading the assessments, I have student analyze their results.  They comb through the test and look at how each question aligns with certain skills.  They also determine if a missed question was a fixable mistake.  I want students to be able to recognize when this occurs and fix them when they can.

Screen Shot 2018-02-18 at 1.27.14 PM

In my experience, 9/10 times students believe that the reason they missed a question was because it was a fixable mistake.  That’s not always the case.  There’s a certain amount of self-reflection and humility that’s involved in this process. Being able to be a bit more honest and communicating what a simple mistake is and what it isn’t might be in order before the next assessment.  So, what steps do students take if a missed questions isn’t a fixable mistake?  It’s one step in the right direction to admit that it isn’t fixable, but then what happens next?  Do students and teachers have plan for this, or do we move on to the next unit?

So, was it a simple mistake or something more?  This question comes up more often than not while I’m grading student work or reflecting back on a class conversation.  Some of the answers are more positive than others.  A simple calculation error can vastly impact an answer, but it may be a simple mistake and the student has a solid conceptual understanding of that skill.  But, a number model that doesn’t match the problem tells me that the student might not be certain about the operation that needs to be completed. Was the simple mistake putting the wrong operation sign in the number model?  I guess you could go down many different paths here.

The question type can influence how well and thorough a student responds. Some questions are quite poor in giving educators quality feedback to help inform instruction.  Right off the top of my head, multiple-choice and true/false questions fit that bill.  They sure are easy to grade by human or a machine.  Hooray!  But, they don’t give me quality feedback that I can use immediately.

This also has me wondering about the quality of the assessments that are given.  Measuring how proficient a student is on a particular concept doesn’t always have to come from standardized or unit assessment results. Classroom observations and formative checkpoints are beneficial and give teachers insights to what students are thinking. I want to make students’ math thinking visible.  Whether that’s using technology or not, making that thinking visible puts the teacher in a  better position. From what I observe, some of the best math task questions are open-ended and tend to have a written component where students are asked to explain their thinking.  The quality of the question and openness of the answer helps educators dig deeper into how and what students are thinking.  I think that’s why teachers are always looking out for better math tasks that help students demonstrate their understanding more accurately.

How do you help students determine if a mistake was simple or something more?

What about those SMPs?

Screen Shot 2018-02-11 at 10.00.39 AM

About a month ago my teaching team was asked by administration to map out our new sixth grade unit assessments.  By mapping, I mean that we had to review the questions on the tests and determine if the question was was multiple choice, short answer, essay or a performance assessment.  We then wrote what type of objective was present, the domain for learning, and the DOK level.

This mapping took a long time and the entire team was knee-deep in our teacher guides. It was a productive session, but we all needed some more caffeine afterwards.  While reviewing the assessments, we noticed how the guides emphasized the standards and the Standards for Mathematical Practices.  Both were given somewhat equal allocated text boxes in the guides.  Both seemed to be highly valued by the publisher and our district math coaches.  While the team was matching up questions and standards, I noticed that the SMPs weren’t getting any love.  They sat there unhighlighted and under appreciated. This had me internally asking questions about how teachers actually incorporate and communicate the SMPs.  So I went to visit the #Mtbos community and came across a Tweet by @cmmteach.

I completely understand that the standards are important, but what about the SMPs?  These practices are part of our lessons, but I’m wondering how teachers address that importance.  I asked a bunch of teachers this same question (I think they’re tired of me talking about it) and I generally get the same generic response.  That response generally is, “I know what they are and they are part of the lessons” or “I sometimes mention them when moments come up to use them.”  I see the SMPs briefly reviewed during math pd opportunities.  I also observe posters of the practices hanging in the classrooms around schools.  I even think there’s a Jedi one roaming the Internet as I’m writing this.  I wonder how often they’re referred to and what students think of them.  A few years ago I even had my students personalize the SMPs, but haven’t revisited them in as much detail since them.  Are they really engrained as part of the daily math lessons or do they need to be outright communicated.  Maybe there isn’t a right answer here.

I’m curious to how other educators communicate the SMPs.  What’s your favorite strategy or technique?

Reflection and Math Goals

Screen Shot 2018-02-03 at 10.31.44 AM.png

Two of my classes took assessments this week.  These are considered unit assessments and are related to math skills that the class has been working on over the past 1-2 months.  My fourth grade class just finished up a fraction unit, while fifth graders ended a unit on equations. I tend to grade the tests and then pass them back in the next day or two.  Seeing that it takes so much class time to give these tests (and the grading) I want students to be able to use these assessments.  By using them, I mean that students should be able to look at them with formative lens and purposefully reflect on the results.  Usually the assessment process looks like this:

Stage 1

  • Assessments are passed back to students
  • Students review their score and are excited or disappointed
  • Students try to figure out how everyone else did

Stage 2

  • Teacher reviews the assessment solutions with the class
  • Students ask questions about why or maybe how they can get additional credit
  • Students see where fixable mistakes exist

Stage 3

  • Students receive their math journals
  • Students fill out a reflection sheet looking at skill strengths and areas to improve
  • Students indicate the most memorable activity and why
  • The teacher and student meet and sign-off on the test analysis and reflection portion


Okay, so stages 1-3 have been happening in my classroom for the past seven or so years.  It’s become part of my classroom’s math routine.  I see benefits in having students reflect on their progress on assessments, but I also want students to look at an assessment beyond the grade itself.  I’ve blogged about this evolution before. I stopped putting actual letter grades on assessments because of this.  I also considered taking off the point totals as well, but ended up keeping them since it was on the grade report anyway.

I see value in the student reflection component.  I believe students feel empowered when they’re given more control, choice, and access in the classroom.  This year I’ve added my own stage 4.  I’ve added this for a couple different reasons.  One, I’ve noticed that students that don’t necessarily meet their own expectations are really hard on themselves.  They often react negatively on the reflection component and I don’t want students to feel worse after reflecting on their performance.  I want this to be a valuable experience and growth opportunity.  Two, my students have kept their math journal for multiple years.  Some of them are jam packed with notes, reflections, and foldables.  You’d be surprised at how much is in some of these journals.  One thing that students continually tell me is that they love going back in their journal and looking at what they completed over the past few years.  They see that their mathematical writing has changed as well as the concepts that they’ve encountered.  It’s similar to a math yearbook to many of my students.  My third reason is that I’ve always been interested in how students perceive themselves as math students.  Over the years, I’ve emphasized that creating an individual math identity is important. I emphasize this at my school’s back to school session. This math identity shouldn’t come from a parent, but instilled within.  Being able to see students for multiple years allows me more of an opportunity to do this.  Also,  I’m excited to share this at NCTM and learn with other educators about the goal setting and monitoring process. This has been an area of growth for me as I’m continually refining the student math reflection process.

So, here’s stage four:

Stage 4

  • Students review and rate their perceived effort level and attention to detail
  • Students provide an example of where their effort level increased
  • Students create a math goal that will be achieved by the end of the year
  • Student indicate how they know that the goal will be met
  • The teacher and student sign-off on the reflection sheet



Screen Shot 2018-02-03 at 9.59.08 AM

Don’t get me wrong, this type of reflection is time consuming.  Whenever I discuss this process with other teachers I get quite a few questions about how to find the time.   Meeting 1:1 with kids to discuss their goal takes time and usually the other students are in stations or working on something independently. I can usually finish up meeting with the kids over 1-2 classes.  Instruction still occurs during this time, it’s just not a whole-group model.

Screen Shot 2018-02-03 at 10.02.01 AM.png

I’ve attempted many strategies to move kids away from comparing their score with others.  One strategy that seemed to work well was to have students go to stations and then I passed out the assessments.  I realized later that they just compared the results when they left the classroom.  I want to shift the paradigm to more of an individual growth model.  It’s a challenge.  Through the years, I believe progress has been made in this, but more needs to be done.

Screen Shot 2018-02-03 at 10.06.22 AM

The student math goals are interesting.  I had to have a brief mini lesson on the topic of math goal setting as many students wanted to initially make a goal of “getting everything right on the next test.”  I think many students were more interested in thinking of what their parents wanted and not necessarily a specific goal for themselves. Keep in mind these are 3-5th graders.  After a few different attempts, students started to make goals that were more skill focused.  Some students are now writing goals about “becoming better a dividing fractions”, “divide decimals accurately”, “become better at solving for x with one-step equations.”  While conferring with the kids I’m reminding them that the goals need to be measurable.

Screen Shot 2018-02-03 at 10.19.35 AMScreen Shot 2018-02-03 at 10.19.51 AMScreen Shot 2018-02-03 at 10.20.06 AMScreen Shot 2018-02-03 at 10.20.37 AM

After the assessment students review their math journals and monitor whether they’ve met their goal or not.  If not, they write down why or possibly change their goal.  I’ll then meet with the student and sign-off on the goal.  My next step is to involve parents in the goal and have a more frequent monitoring process.