Math Class – Day One

Screen Shot 2017-08-08 at 7.29.16 PM.png
Updated on 8/11


My school officially starts in about two weeks.  I’m in the process of editing my digital files and revamping them for the new school year.  It’s a process that I tend to complete every year around this time.  Part of me is already thinking that summer is finished (even though I know it’s not), while another part is excited for the new year.  To be honest, I haven’t fully turned the switch to school mode.  I’m gradually moving in that direction though.

I’m putting together this post to collect my thoughts, reflect on what’s worked before and become a bit more organized with my planning.  In the back of this browser I have a bunch of documents open. My Evernote is in my second tab as well as Tweetdeck.  Each document is somewhat related to an ideas of what I can potentially use during the first few days of school.  Some are activities that I’ve used in the past with success and others are brand new to me.

I usually stick with a similar plan for the first few days of school. I generally play it conservative during the first few days.  I’ve used similar activities during the past five years or so.  After all, building the classroom community and creating a math atmosphere is so pivotal in laying the groundwork for a successful year. Right?  So I tend to use activities that I’ve found successful in the past.  That’s interesting because I tend to try out many new activities/tools as the year progresses, but I keep those first few days standard.  This year I’m planning on doing a few things differently.  I’ll be keeping some of the routines the same, while adding a few newbies (to me) in the process. I have to also keep in mind the fire drills and other logistical pieces that are often required during those first few days.

I know that I’ll be seeing at least three classes on the first day of school.  Each class will last about one hour long.  It’s never really an hour long because of commuting time, lockers, materials, and other reasons.  So I basically get around 55ish minutes for the first day.

I’m planning on having a slide on the whiteboard when students enter the classroom.

Screen Shot 2017-08-08 at 5.18.57 PM

This slide is still a work in progress.  I’d like the students to find any seat that they want.  The tables are already setup in groups of three or four.  Generally students gravitate towards their friend crew, although I have a limited amount of seats so that isn’t always possible.  I’m also thinking about giving kids a card and that’s associated with a particular table.  Still mulling around this idea.  My fourth and fifth graders have had me as a teacher before so they’re usually expecting what they saw last year.

After they all sit and quiet down (which is usually so quick on the first day) I’ll review the agenda.  I’ll introduce myself.  I’m not going into details this time.  Usually I say that I’m Mr. Coaty, a Harry Potter fan, live in Illinois, am a swimmer, and so on…  Instead of doing that, I’m borrowing from Sarah and using a “Getting to know Mr. Coaty” quiz.  I don’t have questions yet, but will in a couple days.  We’ll review the quiz as a class and then the kids will give me a multiple choice quiz.  I’ll basically copy Sarah’s amazing idea and have them put this together and turn it in before the end of the class.  I’m thinking this quiz activity will take around 15 minutes or so.  I’m planning on taking the quizzes after students leave.  I think this a fantastic way to get to know your students and is also a positive step towards building rapport.

After the quiz the class will play a game or two of the geometry game.  It’s similar to Simon Says, but with geometry and number terms.  For example, when I say acute angle, students make an acute angle with their arms.  I show the students the motions associated and then we’ll practice.  This shouldn’t take more than five minutes.  This game is revisited throughout the year as more vocabulary is introduced.

I’ll then pass out the standard “beginning of the year” papers.  At one point I almost went  completely digital with this, but I had issues getting back all of the documents.   My information letter explains the curriculum, policies and all of the other formal pieces.  The Twitter letter explains how the class uses Twitter and how to follow the class on our journey.  The parent information letter is homework for the parents.  Parents fill out their name, contact information and any other comments that they feel I need to know about their child.  I tend to get everyone of these sheets back.  About half have comments and sometimes a couple are more than a page long.  I appreciate hearing from the parents – it gives me a different perspective. The last part of the packet is the math unit letter.  The letter comes from Everyday Math and explains what’s included in the first unit of study.  I’ll review the entire packet with the kids and then ask for questions.  Students put this away and we move on.

This is where I’ll explain the arrival/dismissal flow chart.  I will (hopefully by next week) have flow charts hanging up in my class explaining what to do during arrival and dismissal.

dismissalchart1

I try to make this as concise as possible.  The class will practice the arrival process.  We’ll go in the hall and then enter back into the classroom.  I find elementary students need this practice at first.  I’ll give examples and counter-examples.  I go a little overboard with the counter-examples, but I think the kids have a good understanding of what’s expected.  I’ll do the same with the dismissal flow chart.  This takes a good 10 minutes.

If we have time, my plan is to start Sara’s 100 numbers activity.  The students will already be in groups, so I’ll plan on following Sara’s example that she showcases on her blog.  I’m hoping to have students start to see the positive benefits of working in groups. I’ll be taking pictures and videos that the class can discuss afterwards.  I think this will be a good lead-in to when the class discusses appropriate critiquing later in the week.  This will probably take at least 20-30 minutes.   I might even have to extend it into the next class period.

Near the end of the class I’ll pass out the student consumable journals.  We’ll review the dismissal flow chart and I’ll send my kids to their next class.  I might end with a teaser about how we’ll be looking at math puzzles tomorrow.  I realize that this is a lot to accomplish in one class session.  I’m flexible in moving the 100 activity to the next class if needed.


Update:  8/11

After thinking about it and talking with a number people on Twitter, I’m going to switch up some of these activities.  We’re allowed to change our plans, right?  I guess this post is a living a document.  : )  I boxed the changes.

Screen Shot 2017-08-11 at 2.58.31 PM.png

I decided to give students the opportunity to create name tents.  This is straight out of Sara’s post.  The back will have a daily feedback form for the first five days.  I’ll probably start asking them questions by the time days 3-4 roll around.  I’m going to give a lengthly amount of time for this during the first day.

So I decided to move the 100 activity to day two.  I’m afraid that the class won’t have enough time to complete that entire activity in the limited time that we have.  I’d rather have students complete that activity in its entirety, instead of splitting it up into multiple days.  I think it loses some of it’s bang if it’s split up.  The puzzle activity will replace the 100 activity.  Students will each be given a puzzle piece.  Students will fill them out and the pieces will be compiled to border the class door.

Screen Shot 2017-08-11 at 2.56.28 PM.png

I just need to remember to give out an appropriate amount of pieces to each class so it actually makes a rectangular border.

The second day looks like this:

Screen Shot 2017-08-11 at 3.24.01 PM

This is what’s scheduled to occur, barring any fire drills or expectations meeting.  I read about the triad of responsibility chart about a week ago through Caitlyn’s blog and thought this would be another great way to emphasize classroom community.  It also emphasizes the math component.  I think this anchor chart has a place in my classroom.  It’d be great to have the class co-create it and then it can be referred to throughout the year.  Major kudos to Caitlyn for writing about her experience at NYC Math Lab.  I could see this working really well with my own classroom.

Another piece that I added this year is related to a math claims wall.  I’d like to use a full bulletin board for this and claims will be added and the modified as the year progresses. Something similar to this:

Since I teach multiple grade levels I might split up the board into three parts.  This is my first year trying a math claim wall out so it’ll be interesting.  🙂

I’ll be introducing the paper roller coaster on day two.  Usually my third graders complete this. This is one of my students’ favorite activities and it usually lasts for the majority of the year.

Screen Shot 2017-08-11 at 3.47.57 PM.png

For the past few years I’ve bought one set and used it as a math station.  Students work on creating a base and foundation for the coaster.  They have to cut and score the card stock and eventually create around a five foot roller coaster.  I’ll only have time to introduce the project, but it’s a real exciting time as students enjoy the creative aspect of this activity.

We’ll end day two with the tent feedback forms and a look at factors.  Over the next few days the class will start Estimation180, write in their math journals and work on the first unit of study.

I’m looking forward to what this new year brings!

Math Bell Ringers

My school officially opens up for students in about three weeks.  Teachers can enter in about a week or so since the floors are being waxed and cleaned.  Like many educators during this time of the year, I’m starting to plan out what my first few days are going to look like.  I had a chance to review my schedule and it looks like I’ll be teaching math to students in grades K-5 next year. Right now, all of my materials are in about 30 boxes in my new classroom.  I had to relocate over the summer because of enrollment and extra sections.

As I was looking over the #TMC17 and #MTBoS tags this weekend I started to notice other teachers are also persevering through the planning process.  I also had a chance to catch up on a few blogs yesterday. Reading other peoples’ reflections ignited my own reflection process and I started putting together this post.  One part of my school day that I’m planning out relates to my advanced math class bell ringers. For me, bell ringers have been an ever-changing process from year to year.  A bell ringer is what my students complete during the first 10 minutes of class.  I have a 60 minutes math block for my 3-5th grade classes.  I tend to have students come into my class at different times because of band, orchestra, or other circumstances.  Usually I get all of the students in my class within the first five minutes.  Some students are waiting outside my door at the exact time the math block starts, while others are not.  When students come into the classroom they follow the flow chart and take a look at the agenda that I have projected on the whiteboard.

I tend to use bell ringers to review math concepts that were taught earlier in the week.  I used to use brain teasers and different math games, but they weren’t exactly related to what was being taught.  Each grade level (3-5) uses a different type of ringer and some work better than others.  I’ve been looking at more quality ringers over the summer.  The first 5-10 minutes of class is so valuable and I want to make sure the ringer has students thinking about math in ways that benefit them.  Here’s what I have planned so far:

Third Grade –

I’m going to use Estimation180 as my bell ringer.  Students will come into the classroom, follow the flow chart, open their folder and begin working on the daily E180.  Last year my third grade class was able to make it to around 140 days.  This was something that my kids enjoyed and it was a low-risk activity that had them engaged from the start.  While students look at the day they filled out something similar to this sheet. This year, I’m thinking of having students complete open number lines for some of the days.  It might take a little bit more time, but I’m thinking it’ll be worth it as the year progresses.

Fourth Grade –

My fourth graders have been using Scholastic’s Dynamath for the past few years.  It’s been a great extension for some students, but not all.  I generally assign specific pages and then we review them as a class. I’m still in the process of looking for additional ways to use this bell ringer time more effectively.  I was thinking of possibly using VisualPatterns.  Maybe one pattern per week or something like that.

Fifth Grade –

Last year my fifth grade students used Math Magazine for their bell ringer.  Similar to Dynamath, Math Magazine is designed to reinforce skills taught and also extends into areas that aren’t as familiar.  The publisher designed this particular magazine for middle school math students, but it works well with my math class. At times, students needed to look up different skills to complete this magazine.  I’m thinking of having students use SERP’s AlgebrabyExample.  I started using it last year for a couple months.  I love the variety of problems and that students have to find and correct mistakes.   It also helps that it’s free, unlike the Scholastic resources. This is much different than what students are accustomed to doing in math class.  I’m thinking that students can complete one page per week.  What’s nice is that I can match the skills with a topic that the class is currently exploring.


I’m sure I’ll refine this before school starts, but it’s a start.  What do you use for math bell ringers?

SaveSaveSaveSave

SaveSave

Math Intuition

Screen Shot 2017-07-18 at 3.52.50 PM.png

Over the past two days I’ve been reading and rereading chapter 8-9 in my summer book study. Chapter eight discusses how mathematicians connect ideas.  From what I see in classrooms, this connection of ideas is often directed by the teacher and involves some type of classroom discussion that helps students construct understanding.  Intentionally setting aside time to have math discussions and connect ideas from students is worthwhile.  The prime example of Debbie (the teacher) allowing time for Gunther (student) to put the calendar in the shape of a clock was especially a memorable portion of this chapter.  That opportunity wouldn’t have occurred if the teacher didn’t take the initiative to intentionally plan to use manipulatives to have students construct their own understanding through a math discussion.  Having these student math discussions gives educators feedback in whether students are attempting to make/create connections and whether their overgeneralizing. Creating opportunities for student to make these connections is important.

Chapter nine emphasizes the need for mathematicians to use intuition. I appreciate how the chapter indicates that math is often perceived as a very logical content area.  It’s truly not, but the perception still exists.  Tracy states in the chapter that she’s come to see “mathematics as a creative art that operatives within a logical structure.”  I had to reread this a couple times to let it sink in. I’ve heard it over and over again that someone is “not a math person.”  What I find interesting about this is that mathematical intuition is developed.  Since it’s developed over time it can change.  I tend to tackle this issue quite a bit and address it at the beginning of the school year during Open House. Providing students with opportunities to develop this personal intuition can be a game changer.  It’s up to the teacher and school to create memorable experiences for students to develop math intuition. That’s a responsibility that each teacher takes up when they open their classroom doors. By increasing their math intuition, students may also increase their math confidence. Educators need to carefully think about the different math experiences that we provide for our students.  Those meaningful experiences aren’t always found in general textbooks.

After reading these two chapters, I started to think of what perceived/real barriers stop teachers from intentionally creating these opportunities.

I think sometimes teachers feel as though they’re required to follow word-for-word the scope-and-sequence that’s provided by a district.  This can be the case when a newly adopted text is revealed and teachers are highly encouraged to follow it to a tee.  Some texts even tell teachers what to exactly say, what questions to ask, and predicted student responses.  I’ve been though many different math text rollouts and this occasionally happens.  I see it more at the elementary level though. Having common assessments with a specific timeline that everyone needs to follow can also provide pressure for teachers to fall in line with a particular lesson sequence.  Deviating from that sequence may cause issues. I find that there’s a balance between what a district curriculum office deems “non-negotiable” and room for academic freedom within a sequence.  I’ve been told in the past that a district text is a resource, but for new teachers it may be more than that.  There can be a lot of anxiety, especially if certain parts of your instruction model have to follow a pre-determined sequence and is used for evaluation purposes.

Teachers need to feel comfortable in giving themselves permission to use their own intuition.  That may be easier said than done and it depends on your circumstance.  Despite good intentions, a published text won’t meet the needs of all of your students. I believe that’s why open source resources are frequently shared within the online teacher community. Supplementing or modifying lessons/questions with resources that match the learning needs of your students happens on a daily basis.  Dan’s Ted talk hits on that point.

I believe educators have permission to do this while still meeting a strict scope-and-sequence.  Teacher confidence also plays a role with how willing someone is to try resources outside of the textbook.  Elementary math teachers need to feel empowered to be able to use resources accordingly without feeling as though it’s going to be detrimental in their evaluation.  I think that sometimes teachers don’t exercise their academic freedom to the highest potential because it’s perceived as going against a district’s plan.  Having math coaches available and supportive administration is also important in changing this perception

The work that we do is important.  Creating mathematical intuition happens through repeated experiences.

Photo Jul 18, 3 25 46 PM.jpg
p. 212

Sometimes those experiences are beyond the textbook/worksheet and educators have the ability to make them meaningful.  I’ll be keeping this in mind as I prepare for the new school year.

Look Who’s Talking

Screen Shot 2017-07-06 at 12.50.29 PM

I’ve been able to check off a few books on my summer reading list.  I’m now in the process of reading one book in particular.  It’s been a slow process through this book, but worthwhile as I’m actually thinking of how this applies to my practice.  That takes time. Yesterday, I was on a reading tear and made it through chapter seven.  This is where I ended up paying most of my attention. The chapter is related to asking questions in the math classroom.

In the eyes of most students, questions are often given to them, not something that they get to ask other students or even the teacher.  The ratio of questions they’re required to answer far outweighs what they ask.  I’m not arguing that there’s something wrong with that ratio, but Tracy and others in this chapter make a case to why educators should allow more opportunities for students to ask, wonder, and notice.  I think there’s value in providing these opportunities, although the management involved in that process seems challenging at times.  While reading, I came across a terrific quote by Christopher.

One of the bigger issues is the last highlighted sentence: “Quit before angering child.”  When I read this I actually laughed out loud and then started to realize how often this happens in the classroom.  Ideally, all students would be willing to make a claim, be receptive to what others have to say and then change their claim accordingly.  Some students are much more willing to engage in this type of math dialogue, while others would rather not.  There are different activities and procedures that can help move students towards being more receptive to asking questions during claim dialogues.  Notice and Wonder, 101questions, problem posing, riffing off problems and independent study options can help students ask more questions and encourage them to be a bit more curious.  That curiosity can spur students to ask more questions.  All of those are great resources, but there’s an important piece that needs to be put in place beforehand.  I believe Scott makes a great point.

Screen Shot 2017-07-06 at 12.28.43 PM

Each child has their own tolerance for struggle.  That struggle can turn into frustration quicker for some more than others.  This happens with children and adults. I think most educators have been in situations where a student makes a claim and then retracts it after its been shown that their response wasn’t quite right.  That student then disengages and it’s challenging to get them to be assertive afterwards.  How can this be avoided or is it possible to avoid these types of situations?  I don’t know the exact answer to this, but understanding the level in which a student can struggle without frustration is important.  Struggle is part of what happens in any math class. That productive struggle is what’s often needed before students construct their own mathematical understanding.

Enabling students with tools and models can help in these struggling situations.  I’ve also seen this struggle occur during whole class guided math conversations. Some students shut down when they are called out by another student.  They think that disagreement means that they’re being challenged or attacked. That’s not the intention, but it may be perceived that way by other students. It may be helpful to model what appropriate math dialogue looks like.  After the modeling, practicing that type of math claim dialogue and providing opportunities for questions can help smooth out the process.

I also believe some students are not used to making a claim in a verbal format.  Students are definitely used to talking.  Ask any teacher.  Also, they’re probably familiar with providing reasons why they agree/disagree on paper, but communicating it in a verbal format can cause some issues. Providing these students with sentence starters, using technology that can be shared with the class, or using other appropriate means can help students engage respectfully in a productive math dialogue.

I’ll be keeping these ideas in mind during my planning process.

 

Attending to Precision

Screen Shot 2017-06-26 at 8.58.02 AM.png

Last week I read through chapter five of Becoming the Math Teacher You Wish You’d Had.  Reading this chapter made me wish that school was still in session.  There were times when I was reading that I stopped and reflected on how I manage expectations in the classroom.  Specifically, I thought about how I emphasize the need to be precise during math lessons.  More often than not, the precision aspect is related to computation mistakes as well as issues related to missing or incorrect units.  I address this so many times during the year.  So many that I can’t count the amount of times that it’s mentioned.  I think most math teachers have been there.  In most cases I’ve observed students being able to show their understanding of a particular concept, but they don’t show it on assessment.  A label might be incorrect or a one-digit calculation completely changes an answer.  I see this all the time with adding units related to linear, square, and cubic measurements.  A student may get the answer correct, but the label doesn’t match.  I have issues when students place cm^2 when the label should be cm^3.  There’s a big difference there and it has me questioning whether the student understands the difference between area and volume.  There has to be a better way than just reminding students to check for errors or make a reasonableness check.

A couple of the examples that were showcased also emphasize using precise language.  Avoiding the word “it” and being specific are highlighted.  I find myself repeating certain phrases in class.  Not using “it” to describe a particular unit would be on my repeat list.  Instead of using that devil of a word, teachers can emphasize and have students label the ambiguous “it” into something more accurate.  Incorrect labels are a killer in my class, so this is something I continually emphasize.

Estimating can also play an important role in attending to precision.  My third grade class uses Estimation180 just about every day.  We made it all the way to day 149 last year.  We were pretty pumped about that much progress.  It was a productive struggle and heartening to see how much progress was made.  As time went on students became more accurate with their estimates.  That thought process transitioned to other aspects of math class.  I asked the students to have reasonableness checks before turning in an assignment.  The check doesn’t always happen, but when it does it’s a golden opportunity.  I’ve had some students use a checklist to record whether they’ve estimated first to see if their answer is reasonable.  Again, it’s not always used but I believe it benefits students.

Games can be great opportunities for students to be reminded to attend to precision.  Some games are great for this, others aren’t and bring an anxiety component to the table.   I was reminded of the negative impact of timed tests and elimination games.  I’m not a fan of timed fact tests in the classroom and haven’t used them for years.  More recently, I’ve used timed Kahoots or other elimination games.   Some students are more engaged when there’s a competition component.  This chapter brings awareness to how emphasizing speed can be damaging.  Most of the time these games are low-risk, but they do bring anxiety and can cause some students to withdraw.

Guided class activities like pattern creation can be helpful in reminding students to attend to precision. Using student-created patterns ( ___, ____, 56, ____, _____ ) to develop unique solutions can be utilized to show understanding of numbers.  Students can create a multitude of patterns with this.  It also challenges students to find a pattern that no one else has.  I’ll be keeping this in mind as I plan out next school year.

It seems that students will always need to be reminded to add correct units, review their work and attend to precision.  Having strategies and tools available to address this will be helpful moving forward.

Making Math Mistakes

Screen Shot 2017-06-17 at 9.53.23 PM

This summer I’ve been reading a few different books.  One of them is Becoming the Math Teacher You Wish You’d Had.  It’s part of a book study that started a few weeks ago.  Kudos to Anthony for helping start the study.  I’m slowly making my way through the book, following the tag and listening to people’s comments on Voxer.  My highlighter has been busy.  I appreciate all the different teachers that Tracy showcases.  I’m currently in chapter four, which is related to making mistakes in the math classroom.

I believe making mistakes is part of the math learning process.  I don’t think I’ve always communicated that enough.  Some students that I see come into the classroom with an understanding that mistakes are evil.  They’re not only evil, but I’ve seen them used to humiliate and discourage students and peers.  I believe these types of behaviors tend to crop up when the culture of a classroom isn’t solid.  Of course there are  many other variables at play, but a classroom culture that doesn’t promote risk-taking isn’t reaching its potential.

Tracy showcases different teachers in chapter four.  All the educators highlighted seem to be able to communicate why it’s important to look at mistakes as part of the math journey.  This chapter is full of gems.  A couple takeaways that I found are found below.

  • The math teachers that are highlighted seem to understand that mistakes are opportunities.  When they happen, teachers have a choice to make.  Modeling and showing students different ways to react to mistakes is important.  Students need to be able to understand and be accustomed to making mistakes in stride.  This can be a challenge since some students stall or immediately stop when they run into a mistake. Mistakes shouldn’t be perceived as failure. If a student makes a mistake they need be able to have tools and strategies to move forward.  They need to also find the underlying reason to why the mistake or misconception happened.  Having a misconception investigation procedure in place for these instances is helpful.
  • Using classroom language that creates safety is key.  Teachers need to be able to have phrases in the bank that empower students to participate and take risks.  I found that the teachers highlighted in the book often ask questions related to students explaining their reasoning.  They also set up the classroom conversation so that students build upon each others’ responses.   Students speak their mind about math in these classrooms.  They’re not afraid to respectfully agree or disagree with their peers and explain their mathematically thinking.
  • I noticed that the teachers played multiple roles during the observation.  Teachers often gave students time to work with partners/groups to discuss their mathematical thinking.  This time of group thinking and reporting happened throughout the lessons.  Teachers often anticipated possible misconceptions and guided the classroom discussion through students’ thinking.  The teachers asked probing questions that required students to give answers that displayed their mathematical thinking.  Teachers didn’t indicate whether an answer was correct or incorrect.  Instead, educators asked students to build upon each others’ answers and referred to them as the lesson progressed.

I can take a number of the strategies identified in the observations and apply them to my own setting.  I see benefits in having a classroom conversations where students explain their math thinking.  That productive dialogue isn’t possible unless the culture of the classroom is continually supported so that students feel willing to speak about their thinking.  Students aren’t willing to take risks and explain their thinking to the class unless a positive culture exists.  That type of classroom needs to have a strong foundation.  That doesn’t take a day, or a week.  Instead, this is something that is continually supported throughout the year.  Next year I’m planning to have students use the NY/M tool again.  I’d like to add additional pieces to this tool.  I’m also planning on using more math dialogue in the classroom.  I believe students, especially those at the elementary level, need practice in verbally explaining their mathematical thinking to others.  That verbal explanation gives educators a glimpse into a student’s current understanding.  I also believe that giving students more opportunities to speak with one another about their math thinking will help them develop better explanations when they’re asked to write down their math thinking.

I’m looking forward to starting chapter five on Monday.

 

End of the Year Feedback

 

Screen Shot 2017-06-10 at 7.42.41 AM.png

My school year ended last Wednesday and I’m now getting around to looking at student survey results.  This year I decided to change up my survey and make it more detail oriented, as I wasn’t really getting enough valuable information before.  Instead of creating my own (like in the past) I came across Pernille’s gem of a survey.  I know that she teaches at a middle school, but I thought the survey would be valuable for my kids just as well.  So I basically copied all the questions into my own Google Form, created a QR code and had students scan the code to complete the survey during the last two days of school.  Students already knew their report cards grades and they were asked to place their names on the feedback survey.  This is the first time that I’ve taken the anonymity out of the equation.  In doing so, I was hoping that students would answer the questions more honestly, which I believe actually ended up being the case.  The survey took around 15-20 minutes of time and it was pleasing to actually see students put effort into this task.  I had 54 total responses.  Of course there were absences, but I thought that size wasn’t bad, seeing that I have approximately 60 kids that I see in grades 3-5 every day.

Like I do every year, I critically analyze the results.  I look at survey results as a risk, but also an opportunity to see what the kids perceive.  They don’t always communicate what they’re thinking and this is a small window-like opportunity to catch their perception.  I tend to question the results every year, but have come to peace with an understanding that I look at trends, not necessarily every number.  Like most data, I find the individual comments to be the most beneficial.  I won’t be delving into that too much here, but here are a couple key findings:

Screen Shot 2017-06-10 at 6.34.48 AM

Students averaged a 3.43 for this question.  Part of me is glad that it wasn’t below three as I don’t want students to perceive the class as being light on challenge.  I want students do be able to put in effort, work hard, set goals and see that their effort has produced results.  This doesn’t always happen.  Also, the word difficulty is subjective and what someone determines as a challenge, they might not consider it difficult.  This is becoming even more evident as my school continues to embrace growth mindset philosophies.

Screen Shot 2017-06-10 at 6.34.57 AM.png

Okay, the good ole homework question.  I gave homework around 2-3 times a week and it’s used for practice/reinforcement.  Students rated this as a 2.85, which means I should be giving more, right?  Haha.  I believe students analyze this question and compare the amount of homework received in their homeroom vs. my class.  Over the years I’ve given less and less homework.  Early in my teaching career I used to give homework Monday-Friday, but have reduced that amount during the last five years.  It’s interesting to see the students’ perspective on this heavily debated subject.  Maybe next year I could add a question related to whether the homework helped reinforce concepts for students?  We’ll see.

Screen Shot 2017-06-10 at 6.35.10 AM

I really like this question.  It’s risky as I don’t want the numbers to be the same, but it’s also beneficial because I truly want to see how students’ perceptions of their own growth have changed.  The first question came up with an average 7.67, which I was pretty pumped about.  Most students that I see perceive math as something positive.  Having that perception helps my purpose and it’s a also a credit to past teachers.  The second question rang up as a 9.15.  This was a helpful validation to show that students perceptions about math can change over time.  It also emphasizes the larger picture that math is more than rote memorization/processes and it surrounds our daily life.  I also wonder whether removing the anonymity portion influencd this score in some way.

Screen Shot 2017-06-10 at 6.35.18 AM

This question made me a little anxious.  I feel like knowing a student and developing a positive rapport is such an important component.  It came in as a 4.13.  While looking over the data I found that students that didn’t perform as well rated this much lower than those that did.  Spending time asking about students’ lives is important. Time is such  valuable commodity in classrooms and ensuring that you know a bit more about students can benefit all involved.

Screen Shot 2017-06-10 at 7.20.19 AM.png

Some students said that I could attend their sporting events or ask about what they did over the summer.  Other students said that I could’ve used a survey at the beginning of the year and not just at the end.  Ideally, it’s probably a decent idea to give a perception survey at the beginning of the year to get to know the students.  I didn’t do that this year, but will most likely put one together for next year.  It’s on the docket.

Screen Shot 2017-06-10 at 6.35.34 AM.png

The responses that I received on the “Anything Else” question surprised me. I’ve never used this before so I wasn’t anticipating results, but I was pleasantly surprised.  About a third of the students mentioned class activities that they enjoyed or told me about how they’ve changed over the school year.  Some students commented about certain math activities that they thought were valuable.  Making it mandatory probably also played a role in why students added more than a “No” to the comment field.  In the future I’ll be adding an “anything else” question to my survey.


Well, now that the school year is over it’s on to planning the next!